(1日) (1日) (1日)

#### 2 カラー QCD の低温高密度における相構造 PHASE STRUCTURE OF DENSE 2-COLOR QCD AT LOW TEMPERATURES

#### T.-G. Lee (Kochi)

w/ E.Itou (Keio/Kochi/RCNP), K.Iida (Kochi)

based on arXiv:1910.07872

The 42nd Shikoku Seminar (2019 年度四国地区理論物理学セミナー)

Kochi University, Japan

7 December, 2019

(4) (2) (4) (3) (4)

A 10

### OUTLINE









イロト イヨト イヨト イヨト

3

## Introduction

### MOTIVATION

QCD phase diagram:



- finite density regime is still less fully understood (inaccessible in lattice simulations due to sign problem)
- consider the SU(2) gauge theory (i.e. 2-color QCD)

### MOTIVATION

QCD phase diagram:



- finite density regime is still less fully understood (inaccessible in lattice simulations due to sign problem)
- consider the SU(2) gauge theory (i.e. 2-color QCD)

## Method

#### Why 2-color QCD?

- Similar nonperturbative properties
  - e.g., color confinement, chiral symmetry breaking, ...
- Sign-problem free

 $\det[\Delta(\mu)] \in \mathbb{R}, \ \det[\Delta^{\dagger}(\mu)\Delta(\mu)] > 0$  for even  $N_f$ 

 $\Rightarrow$  MC calculations are feasible

#### But...

• Numerical instability ( $\mu\gtrsim m_{
m PS}/2$ ) [Muroya-Nakamura-Nonaka 2001,2003]

details

 $\Rightarrow \text{ introduce a diquark source} \quad (\det[\Delta(\mu)] \to \det[\Delta^{\dagger}(\mu)\Delta(\mu) + J^2]^{1/2})$ [Kogut-Sinclair-Hands-Morrison 2001, Kogut-Toublan-Sinclair 2002, Alles-D'Elia-Lombardo 2006, etc]

$$S_F = \bar{\psi}_1 \Delta(\mu) \psi_1 + \bar{\psi}_2 \Delta(\mu) \psi_2 - J \bar{\psi}_1(C\gamma_5) \tau_2 \bar{\psi}_2^T + \bar{J} \psi_2^T(C\gamma_5) \tau_2 \psi_1$$

 $\Longrightarrow$  take the vanishing limit of the source term  $~(j \rightarrow 0,~J=j\kappa)$ 

Here:

 $\blacktriangleright \ \ \mbox{Investigate the phase structure of $QC_2D$} \ \ (\rightarrow {\rm might \ shed \ light \ on \ real $QCD$})$ 

## STRATEGY

• determine  $T_c$  as a reference temperature ( $\leftarrow$  chiral susceptibility peak)



(Our results:  $T_c$  lies at  $\beta = 0.9, N_{\tau} = 10$ )

• investigate the phase structure at two temperatures varying  $\mu$ 

$$\triangleright T = 0.45T_c$$
 (density scan at cold regime)

 $ightarrow T = 0.89T_c$  (density scan slightly below  $T_c$ )

イロト イポト イヨト イヨト

3

# Simulation details

### LATTICE SETUP

- ▶ Lattice action: Iwasaki gauge action + 2-flavor Wilson fermion action
- ▶ Lattice size:  $(N_s, N_\tau) = (16, 16)$  and (32, 8)
- Lattice parameters:
  - $(\beta, \kappa) = (0.800, 0.159)$   $[\rightarrow m_{\rm PS}/m_{\rm V} = 0.823, am_{\rm PS} = 0.623]$

eta: inverse gauge coupling,  $\kappa$ : hopping parameter,  $m_{PS}$ : pseudoscalar meson mass,  $m_V$ : vector meson mass

•  $a\mu \leq 1.0~~(\mu/m_{
m PS} \leq 1.6)$  (to avoid a lattice artifact)

- ► Two temperatures: temperatures (T = <sup>1</sup>/<sub>aN<sub>τ</sub></sub>) corresponding to N<sub>τ</sub> = 16, 8 are found with lattice spacing a at β = 0.8 when T/T<sub>c</sub> = 1 at (β, N<sub>τ</sub>) = (0.9, 10).
  - $(\beta, N_{\tau}) = (0.8, 16) : T \simeq 0.45 T_c$

• 
$$(\beta, N_{\tau}) = (0.8, 8) : T \simeq 0.89T_c$$



## Observables and Phases

#### Observables:

Polyakov loop: (approximate) order parameter of confined/deconfined phase

$$L = \frac{1}{N_s^3} \sum_{\vec{x}} \prod_{\tau} U_4(\vec{x}, \tau) \ \rightarrow \ \langle L \rangle \sim e^{-F_q/T} \left\{ \begin{array}{l} \langle L \rangle \sim 0 \ (F_q = \infty) : \text{confinement} \\ \langle L \rangle \neq 0 \ (F_q = 0) : \text{deconfinement} \end{array} \right.$$

• diquark condensate: order parameter of superfluid phase  $F_q:$  single quark free energy

 $\langle qq \rangle = \frac{\kappa}{2} \langle \bar{\psi}_1 C \gamma_5 \tau_2 \bar{\psi}_2^T - \psi_1 C \gamma_5 \tau_2 \psi_2^T \rangle \quad \rightarrow \quad \left\{ \begin{array}{l} \langle qq \rangle = 0 : \text{ normal phase} \\ \langle qq \rangle \neq 0 : \text{ superfluid phase} \end{array} \right.$ 

quark number density: criterion of BEC/BCS states

 $n_q < 0$  : BEC superfluid phase,  $n_q \sim n_q^{
m tree}$  : BCS superfluid phase  $n_q^{
m tree}$ : quark number density described by a free field propagator at tree level





#### **Observables** and **Phases**

#### Observables:

Polyakov loop: (approximate) order parameter of confined/deconfined phase

$$L = \frac{1}{N_s^3} \sum_{\vec{x}} \prod_{\tau} U_4(\vec{x}, \tau) \ \rightarrow \ \langle L \rangle \sim e^{-F_q/T} \left\{ \begin{array}{l} \langle L \rangle \sim 0 \ (F_q = \infty) : \text{confinement} \\ \langle L \rangle \neq 0 \ (F_q = 0) : \text{deconfinement} \end{array} \right.$$

**b** diquark condensate: order parameter of superfluid phase  $F_q$ : single quark free energy

 $\langle qq \rangle = \frac{\kappa}{2} \langle \bar{\psi}_1 C \gamma_5 \tau_2 \bar{\psi}_2^T - \psi_1 C \gamma_5 \tau_2 \psi_2^T \rangle \rightarrow \begin{cases} \langle qq \rangle = 0 : \text{normal phase} \\ \langle qq \rangle \neq 0 : \text{superfluid phase} \end{cases}$ 

quark number density: criterion of BEC/BCS states

 $n_q < 0:$  BEC superfluid phase,  $n_q \sim n_q^{
m tree}:$  BCS superfluid phase  $n_q^{
m tree}:$  quark number density described by a free field propagator at tree level

Our definition of phases:

|                       | Hadronic  | QGP      | Superfluid |                             |
|-----------------------|-----------|----------|------------|-----------------------------|
|                       | Thauronic |          | BEC        | BCS                         |
| $\langle  L  \rangle$ | = 0       | $\neq 0$ | -          | -                           |
| $\langle qq \rangle$  | = 0       | = 0      | $\neq 0$   | $\neq 0$                    |
| $n_q$                 | -         | _        | $n_q > 0$  | $n_q/n_q^{\rm tree}{\sim}1$ |

◎ ▶ ★ 臣 ▶ ★ 臣 ▶ ○ 臣 ○ の Q @

通 ト イヨ ト イヨト

## Simulation results

phase structure at  $T = 0.45T_c$ 

The 42ND Shikoku Seminar (Dec. 7, 2019) / T.-G. Lee Phase structure of dense 2-color qcd at low temperatures

## POLYAKOV LOOP



- simulations with j are feasible for  $\mu/m_{\rm PS} \geq 0.50$
- $\blacktriangleright$  nonzero value for  $\mu/m_{
  m PS}\gtrsim 1.2$  (toward deconfinement transition?)
- ▶ susceptibility is marginally peaked at  $\mu/m_{PS} \sim 1.44 \ (a\mu \sim 0.90)$ (but  $a\mu$  is close to  $1 \rightarrow$  lattice artifact??)

SIMULATION RESULTS

## DIQUARK CONDENSATE



- transition from Hadronic to Superfluid transiton with increasing density
- transition point  $\mu_B$  lies at  $\mu/m_{\rm PS} \simeq 1/2$  (consistent with  $\chi {\rm PT}$  prediction)
- condensates tend to decrease from  $\mu/m_{\rm PS} = 1.28~(\mu \sim 0.80)$

 $\mu/m_{\rm PS} = 1.28 - 1.60 \ (\mu = 0.80 - 1.00) \Rightarrow$  close to 1 lattice artifact?

(not only for staggered fermions [Kogut+ 2002, Braguta+ 2016] but for Wilson fermions)

#### DIQUARK CONDENSATE



transition from Hadronic to Superfluid transiton with increasing density

- transition point  $\mu_B$  lies at  $\mu/m_{\rm PS} \simeq 1/2$  (consistent with  $\chi{\rm PT}$  prediction)
- our data is consistent with theoretical curve on scaling low  $\triangleright$  scaling low around critical point  $\mu_B$ :  $\langle qq \rangle \propto (\mu - \mu_B)^{\beta_m}$ 
  - $\rightarrow$  give  $\mu_B=m_{\rm PS}/2$  and  $\beta_m=0.50$  from mean-field predictions by  $\chi{\rm PT}$  [Kogut et al. 2010]

$$\rightarrow$$
 reasonable fitting ( $\chi^2$ /d.o.f = 1.31)

#### QUARK NUMBER DENSITY



• weakly coupled BCS phase:  $0.72 \lesssim \mu/m_{\rm PS} \lesssim 1.28 ~(0.45 \lesssim a\mu \lesssim 0.80)$ 

- ▶ strongly coupled BEC phase:  $0.50 \leq \mu/m_{PS} \leq 1.72$  ( $0.31 \leq a\mu \leq 0.45$ )
- ▶ nonzero  $n_q$  regime in Hadronic phase:  $0.42 \lesssim \mu/m_{\rm PS} \lesssim 0.50~(0.26 \lesssim a\mu \lesssim 0.31)$

 $\Rightarrow$  "Hadronic matter??" (in contrast to  $\chi$ PT prediction)

通 ト イヨ ト イヨト

## Simulation results

phase structure at  $T = 0.89T_c$ 

The 42nd Shikoku Seminar (Dec. 7, 2019) / T.-G. Lee Phase structure of dense 2-color qcd at low temperatures

#### DIQUARK CONDENSATE



- ▶ keep a zero value even for higher  $\mu/m_{PS}$  regime in  $j \rightarrow 0$  limit
- no superfluidity is observed in the  $\mu$ -scan at  $T = 0.89T_c$

#### OTHER OBSERVABLES



- Polyakov loop: tends to be deconfined with increasing density
- chiral condensate: tends to be chirally restored with increasing density
- quark number density: nonzero value early on around  $\mu \approx 0.16 \ (\ll m_{\rm PS}/2)$
- $\Rightarrow$  transition from Hadronic to QGP phase with increasing density

・ロト ・聞ト ・ヨト ・ヨト

3

# Summary

Simulation details

SIMULATION RESULT

SUMMARY

## SUMMARY



#### Phase structure at $T = 0.89T_c$

- system undergoes Hadronic-QGP transition
- there occurs no superfluid transition
  - $\Rightarrow$  Hadronic  $\rightarrow$  QGP with increasing  $\mu$

#### Phase structure at $T = 0.45T_c$

- system undergoes Hadronic-Superfluid transition
- BEC and BCS states are identified
  - $\Rightarrow$  Hadronic  $\rightarrow$  BEC  $\rightarrow$  BCS with increasing  $\mu$

伺 ト イヨト イヨト

- $\blacktriangleright$  nonzero  $n_q$  regime in Hadronic phase
  - $\Rightarrow$  found the "Hadronic matter"
- deconfined BCS superfluid transition has not observed this time...

but such a phase might exist in the intermediate-T and high- $\mu$  regime, where a typical momentum of quarks  $p_F$  is larger than the size of the Fermi surface ( $\sim \mu$ ).

## Thank you for your kind attention!

イロト イポト イヨト イヨト

# Backup Slides

The 42nd Shikoku Seminar (Dec. 7, 2019) / T.-G. Lee Phase structure of dense 2-color qcd at low temperatures

#### Dirac eigenvalue distribution



< 17 ►

 $\exists \rightarrow$ 

Simulation details

Return

SIMULATION RESUL

SUMMARY

### LATTICE ACTION

Iwasaki gauge action:

$$S_g = \beta \sum_x \left( c_0 \sum_{\substack{\mu < \nu \\ \mu, \nu = 1}}^4 W_{\mu\nu}^{1 \times 1}(x) + c_1 \sum_{\substack{\mu \neq \nu \\ \mu, \nu = 1}}^4 W_{\mu\nu}^{1 \times 2}(x) \right)$$

$$\beta = 4/g_0^2$$
,  $c_1 = -0.331$ ,  $c_0 = 1 - 8c_1$ 

#### 2-flavor Wilson fermion action:

$$S_F = \bar{\psi}_1 \Delta(\mu) \psi_1 + \bar{\psi}_2 \Delta(\mu) \psi_2 - J \bar{\psi}_1(C\gamma_5) \tau_2 \bar{\psi}_2^T + \bar{J} \psi_2^T(C\gamma_5) \tau_2 \psi_1$$

Wilson-Dirac operator:

$$\Delta(\mu)_{x,y} = \delta_{x,y} - \kappa \sum_{i=1}^{3} \left[ (1 - \gamma_i) U_{x,i} \delta_{x+\hat{i},y} + (1 + \gamma_i) U_{y,i}^{\dagger} \delta_{x-\hat{i},y} \right] -\kappa \left[ e^{+\mu} (1 - \gamma_4) U_{x,4} \delta_{x+\hat{4},y} + e^{-\mu} (1 + \gamma_4) U_{y,4}^{\dagger} \delta_{x-\hat{4},y} \right]$$

Return

SUMMARY

## FERMION MATRIX

• fermion action with 
$$\Psi = (\psi_1, C^{-1}\tau_2 \bar{\psi}_2^T)^T$$
:

$$S_F = \bar{\Psi} \mathcal{M} \Psi$$

extended fermion matrix (inverse Gorkov propagator):

$$\mathcal{M} = \left(\begin{array}{cc} \Delta(\mu) & J\gamma_5 \\ -J\gamma_5 & \Delta(-\mu) \end{array}\right)$$

 $\blacktriangleright \ \det[\mathcal{M}^\dagger \mathcal{M}]$  corresponds to 4-flavor fermion action

 $\rightarrow$  reduce to 2-flavor one:

$$\det[\mathcal{M}^{\dagger}\mathcal{M}]^{1/2} = \det[\Delta^{\dagger}(\mu)\Delta(\mu) + J^2]^{1/2} \det[\Delta^{\dagger}(-\mu)\Delta(-\mu) + J^2]^{1/2}$$

|         |       |          | Summary |
|---------|-------|----------|---------|
| LATTICE | SETUP | ▶ Return |         |
|         |       |          |         |

- ▶ Lattice action: Iwasaki gauge action + 2-flavor Wilson fermion action
- ▶ Lattice size:  $(N_s, N_\tau) = (16, 16)$  and (32, 8)
- Lattice parameters:
  - $(\beta, \kappa) = (0.800, 0.159)$   $[\rightarrow m_{\rm PS}/m_{\rm V} = 0.823(9), am_{\rm PS} = 0.623(3)]$
  - $a\mu \le 1.0 \quad (\mu/m_{\rm PS} \le 1.6)$



INTRODUCTION

Return

## Observables and Phases

Observables: order parameters characterizing each phase

confined/deconfined phase: Polyakov loop

$$L = \frac{1}{N_s^3} \sum_{\vec{x}} \prod_{\tau} U_4(\vec{x}, \tau)$$

superfluid phase: diquark condensate

$$\langle qq \rangle = \frac{\kappa}{2} \langle \bar{\psi}_1 C \gamma_5 \tau_2 \bar{\psi}_2^T - \psi_1 C \gamma_5 \tau_2 \psi_2^T \rangle$$

BEC/BCS superfluid phase: quark number density

$$\begin{split} & \mathsf{BEC:} \ a^{3}n_{q} \! = \! \sum_{i} \kappa \langle \bar{\psi}_{i}(x)(\gamma_{0} - \mathbb{I}_{4})e^{\mu}U_{4}(x)\psi_{i}(x+\hat{4}) + \bar{\psi}_{i}(x)(\gamma_{0} + \mathbb{I}_{4})e^{-\mu}U_{4}^{\dagger}(x-\hat{4})\psi_{i}(x-\hat{4}))\rangle \\ & \mathsf{BCS:} \ n_{q}^{\mathsf{tree}}(\mu) \! = \! \frac{4N_{c}N_{f}}{N_{s}^{3}N_{\tau}} \sum_{k} \frac{i\sin \tilde{k}_{0}[\sum_{i}\cos k_{i} - \frac{1}{2\kappa}]}{[\frac{1}{2\kappa} - \sum_{\nu}\cos \tilde{k}_{\nu}]^{2} \! + \! \sum_{\nu}\sin^{2}\tilde{k}_{\nu}}, \quad \begin{split} \tilde{k}_{0} \! = \! k_{0} \! - \! i\mu \! \frac{2\pi}{N_{\tau}} (n_{0} \! + \! \frac{1}{2}) \! - \! i\mu \\ \tilde{k}_{i} \! = \! k_{i} \! = \! \frac{2\pi}{N_{\tau}} n_{i}, \ i = \! 1.2, 3 \end{split}$$

Our definition of phases:

| ses:                  | Hadronic | QGP      | Superfluid |                                |
|-----------------------|----------|----------|------------|--------------------------------|
|                       |          |          | BEC        | BCS                            |
| $\langle  L  \rangle$ | = 0      | $\neq 0$ | -          | -                              |
| $\langle qq \rangle$  | = 0      | = 0      | $\neq 0$   | $\neq 0$                       |
| $n_q$                 | -        | -        | $n_q > 0$  | $n_q/n_q^{\text{tree}} \sim 1$ |

### J-DEPENDENCE OF DIQUARK CONDENSATE • Return



• nonzero value for  $\mu/m_{\rm PS} \ge 0.50$  in j=0 limit (superfluidity occurs)

► condensates tend to decrease from  $\mu/m_{PS} = 1.28 \ (\mu \sim 0.80)$  $\mu/m_{PS} = 1.28 - 1.60 \ (\mu = 0.80 - 1.00) \Rightarrow$  close to 1 lattice artifact?

(not only for staggered fermions [Kogut+ 2002, Braguta+ 2016] but for Wilson fermions)

► 
$$Z = \int DUD\bar{q}Dq \exp(-S_G - S_F) = \int DU\det\Delta \exp(-S_G)$$
  
 $\langle O \rangle = \frac{1}{Z} \int DUO\underline{\det\Delta} \exp(-S_G)$  probability  
►  $\Delta \rightarrow \Delta(\mu) = D + m + \mu\gamma^0$   
 $h.c. \quad \Delta(\mu)^{\dagger} = \gamma^5\Delta(-\mu)\gamma^5$   
 $c.c. \quad [\det\Delta(\mu)]^* = \det\Delta(-\mu)$   
►  $\mu = 0 \rightarrow \det\Delta \in \mathbb{R}$   
 $\mu \neq 0 \rightarrow \det\Delta \in \mathbb{C} \rightarrow MC$  infeasible (not positive probability)

THE 42ND SHIKOKU SEMINAR (DEC. 7, 2019) / T.-G. LEE PHASE STRUCTURE OF DENSE 2-COLOR QCD AT LOW TEMPERATURES

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●