

Universidade de Coimbra
Faculdade de Ciências e Tecnologia
Departamento de Física
Centro de Física

Remarks on the Mean-Field Theory Based on the SO(2N+1) Lie Algebra
 of the Fermion Operators

Seiya NISHIYAMA, (Colaboradores)

Centro de Física da Universidade de Coimbra (CFisUC),
Departamento de Física, Universidade de Coimbra, 3004-516 Coimbra, Portugal

Dedicated to the Memory of Hideo Fukutome

Talk at Shikoku Seminar

Faculty of Science and Technology, Kochi University

Kochi, 780-8520 Japan
December 82019

- Introduction; Motivation
- $\mathrm{SO}(2 \mathrm{~N}+1)$ Bogoliubov transformation and generalized density matrix (GDM)
- Generalized Hartree-Bogoliubov mean-field (MF) Hamiltonian and its diagonalization
- Mean-field approach by another form of generalized density matrix (GDM)
- Discussions, perspective and summary
- References
- Mean-field theory based on the $\mathfrak{J a c o b i} \mathfrak{h s p}:=$ semidirect sum $\mathfrak{h}_{N} \rtimes \mathfrak{s p}(2 N, \mathbb{R})_{\mathbb{C}}$ algebra of boson operators, S. N. \& J. da P., J. Math. Phys. 60 (2019) 081706,
- Remarks on the MFT based on the $\operatorname{SO}(2 \mathrm{~N}+1)$ Lie algebra of the fermion operators,
S. N. \& J. da P., Int. J. Geom. Methods Mod. Phys. 16 (2019) 1950184,
- Time dependent $S O(2 N+1)$ theory for unified description of bose and fermi type collective excitations, H. F. \& S. N., Progr. Theor. Phys. 72 (1984) 239.

A theory for self-consistent field (SCF) description of Fermi collective excitations has been proposed, based on the $S O(2 N+1)$ Lie algebra of fermion operators;

Fermion mean-field theory(MFT)on Kähler coset space $\frac{G}{H}=\frac{S O(2 N+2)}{U(N+1)}$ is given, basing on $S O(2 N+1)$ Lie algebra of fermion operators. Embedding $S O(2 N+1)$ group into $S O(2 N+2)$ group and using $\frac{S O(2 N+2)}{U(N+1)}$ coset variables, we give the new MFT on the symmetric space $\frac{S O(2 N+2)}{U(N+1)}$;

1) We take an Hamiltonian consisting of the generalized HB (GHB) MF Hamiltonian (MFH) and also assume a linear MFH expressed in terms of the generators of the $S O(2 N+1)$ Lie algebra.
2) Diagonalizing MFH, a new aspect of eigenvalues of MFH is shown. Excitation energy arisen from additional SCF parameter, never been seen in the traditional fermion MFT, is derived.

- S. Berceanu, L. Boutet de Monvel and A. Gheorghe

Linear dynamical systems, coherent state manifolds, flows, and matrix Riccati equation, J. Math. Phys. 34 (1992) 2353-2371;
On equations of motion on compact Hermitian symmetric spaces, J. Math. Phys. 33 (1992) 998-1007;

§2. $S O(2 N+1)$ Bogoliubov transformation and GDM

We consider a fermion system with N single-particle states. Let c_{α} and $c_{\alpha}^{\dagger}(\alpha=1, \cdots, N)$ be the annihilation-creation operatorss satisfying the canonical commutation relation for the fermion.

$$
\begin{gathered}
\left\{c_{\alpha}, c_{\beta}^{\dagger}\right\}=\delta_{\alpha \beta},\left\{c_{\alpha}, c_{\beta}\right\}=\left\{c_{\alpha}^{\dagger}, c_{\beta}^{\dagger}\right\}=0 \\
c_{\alpha}, c_{\alpha}^{\dagger}, \quad E_{\beta}^{\alpha}=c_{\alpha}^{\dagger} c_{\beta}-\frac{1}{2} \delta_{\alpha \beta}=E_{\alpha}^{\beta \dagger} \\
E^{\alpha \beta}=c_{\alpha}^{\dagger} c_{\beta}^{\dagger}=E_{\beta \alpha}^{\dagger}, \quad E_{\alpha \beta}=c_{\alpha} c_{\beta}=-E_{\beta \alpha}, I
\end{gathered}
$$

which are identified with generators of the Lie algebra $S O(2 N+1)$.
The $S O(2 N+1)$ Lie algebra of the fermion operators contains $U(N)\left(=\left\{E_{\beta}^{\alpha}\right\}\right)$ as sub-algebra.

The operator $(-1)^{n}: n=c_{\alpha}^{\dagger} c_{\alpha}$ anti-commutes with c_{α} and c_{α}^{\dagger},

$$
\left\{c_{\alpha},(-1)^{n}\right\}=\left\{c_{\alpha}^{\dagger},(-1)^{n}\right\}=0
$$

Seiya Nishiyama
Talk at Shikoku Seminar, Dec. 7-8 2019

Introduce operator $\Theta \equiv \theta_{\alpha} c_{\alpha}^{\dagger}-\bar{\theta}_{\alpha} c_{\alpha}, \Theta^{2}=-\bar{\theta}_{\alpha} \theta_{\alpha} \equiv-\theta^{2}$,

then we have

$e^{\Theta}=Z+X_{\alpha} c_{\alpha}^{\dagger}-\bar{X}_{\alpha} c_{\alpha}, \bar{X}_{\alpha} X_{\alpha}+Z^{2}=1, Z=\cos \theta, X_{\alpha}=\frac{\theta_{\alpha}}{\theta} \sin \theta$.

We obtain,

$$
\begin{align*}
& e^{\Theta}\left(c, c^{\dagger}, \frac{1}{\sqrt{2}}\right)(-1)^{n} e^{-\Theta}=\left(c, c^{\dagger}, \frac{1}{\sqrt{2}}\right)(-1)^{n} G_{X} \\
& G_{X} \stackrel{\text { def }}{=}\left[\begin{array}{ccc}
I_{N}-\bar{X} X^{\mathrm{T}} & \bar{X} X^{\dagger} & -\sqrt{2} Z \bar{X} \\
X X^{\mathrm{T}} & I_{N}-X X^{\dagger} & \sqrt{2} Z X \\
\sqrt{2} Z X^{\mathrm{T}}-\sqrt{2} Z X^{\dagger} 2 Z^{2}-1
\end{array}\right] \tag{2}
\end{align*}
$$

Let G be the $(2 N+1) \times(2 N+1)$ matrix defined by

$$
\begin{aligned}
G \equiv G_{X}\left[\begin{array}{ccc}
a & \bar{b} & 0 \\
b & \bar{a} & 0 \\
0 & 0 & 1
\end{array}\right] & =\left[\begin{array}{ccc}
a-\bar{X} Y & \bar{b}+\overline{X Y} & -\sqrt{2} Z \bar{X} \\
b+X Y & \bar{a}-X \bar{Y} & \sqrt{2} Z X \\
\sqrt{2} Z Y & -\sqrt{2} Z \bar{Y} & 2 Z^{2}-1
\end{array}\right] \\
X & =\bar{a} Y^{\mathrm{T}}-b Y^{\dagger} \\
Y & =X^{\mathrm{T}} a-X^{\dagger} b \\
& Y Y^{\dagger}+Z^{2}=1
\end{aligned}
$$

Seiya Nishiyama
Talk at Shikoku Seminar, Dec. 7-8 2019
$X:$ column, Y :row, vectors. The $S O(2 N+1)$ canonical transformation (TR) $U(G)$ is generated by the fermion $S O(2 N+1)$ Lie operators. The $U(G)$ is extension of the generalized Bogoliubov TR $U(g)$ to a nonlinear Bogoliubov TR.
By the $\operatorname{TR} U(G)$ for fermion $\left[c, c^{\dagger}, \frac{1}{\sqrt{2}}\right]$, we obtain
$U(G)\left[c, c^{\dagger}, \frac{1}{\sqrt{2}}\right](-1)^{n} U^{-1}(G)=\left[c, c^{\dagger}, \frac{1}{\sqrt{2}}\right](-1)^{n} G$,
$G \xlongequal{\text { def }}\left[\begin{array}{ccc}A & \bar{B} & -\frac{\bar{x}}{\sqrt{2}} \\ B & \bar{A} & \frac{x}{\sqrt{2}} \\ & & \bar{y}\end{array}\right],|G>=U(G)| 0>, g=\left[\begin{array}{ll}a & \bar{d} \\ b & \bar{a}\end{array}\right],|g>=U(g)| 0>$.
$|G>/| g>$ are the $S O(2 N+1) / S O(2 N)$ coherent states, respectively.
$N \times N$ matrices $A=\left(A_{\beta}^{\alpha}\right)$ and $B=\left(B_{\alpha \beta}\right)$ and N-dimensional column and row vectors $x=\left(x_{\alpha}\right)$ and $y=\left(y_{i}\right)$ and z are defined as

$$
\begin{gather*}
A \equiv a-\bar{X} Y=a-\frac{\bar{x} y}{2(1+z)}, B \equiv b+X Y=b+\frac{x y}{2(1+z)} \tag{5}\\
x \equiv 2 Z X, y \equiv 2 Z Y, z \equiv 2 Z^{2}-1
\end{gather*}
$$

Using $U(G)\left(c, c^{\dagger}, \frac{1}{\sqrt{2}}\right) U^{\dagger}(G)=U(G)\left(c, c^{\dagger}, \frac{1}{\sqrt{2}}\right) U^{\dagger}(G)(z+\rho)(-1)^{n}$, Eq. (5) can be written with a q-number gauge factor $(z-\rho)$ as

$$
\begin{gather*}
U(G)\left(c, c^{\dagger}, \frac{1}{\sqrt{2}}\right) U^{\dagger}(G)=\left(c, c^{\dagger}, \frac{1}{\sqrt{2}}\right)(z-\rho) G \tag{6}\\
G^{\dagger} G=G G^{\dagger}=1_{2 N+1}, \operatorname{det} G=1
\end{gather*}
$$

$$
\begin{equation*}
U(G) U\left(G^{\prime}\right)=U\left(G G^{\prime}\right), U\left(G^{-1}\right)=U^{-1}(G)=U^{\dagger}(G), U\left(1_{2 N+1}\right)=\mathbb{I}_{G} \tag{7}
\end{equation*}
$$

The $U(G)$ is the nonlinear $\mathbf{T R}$ with a q-number gauge factor $(z-\rho)$ where ρ is given as $\rho=x_{\alpha} c_{\alpha}^{\dagger}-\bar{x}_{\alpha} c_{\alpha}$ and $\rho^{2}=-\bar{x}_{\alpha} x_{\alpha}=z^{2}-1$.

$S O(2 N+1) \boldsymbol{G D M}$

We consider the following $S O(2 N+1)$ GDM:

$$
\mathcal{W} \stackrel{\text { def }}{=} G\left[\begin{array}{ccc}
-1_{N} & 0 & 0 \tag{8}\\
0 & 1_{N} & 0 \\
0 & 0 & 1
\end{array}\right] G^{\dagger}, \quad \mathcal{W}^{\dagger}=\mathcal{W}, \quad \mathcal{W}^{2}=1_{2 N+1}
$$

Using \mathcal{W}, we will attempt a different approach to the derivation of the unified $S O(2 N+1) \mathrm{HB}$ eigenvalue equation (EE) from the fermion MF Hamiltonian.

Seiya Nishiyama
Talk at Shikoku Seminar, Dec. 7-8 2019

§3. GHB mean-field Hamiltonian and its diagonalization

GHB MFH for which we assume a linear MFH expressed in terms of the generators of the $S O(2 N+1)$ algebra:

$$
\begin{align*}
H_{S O(2 N+1)}=F_{\alpha \beta}\left(c_{\alpha}^{\dagger} c_{\beta}-\frac{1}{2} \delta_{\alpha \beta}\right) & +\frac{1}{2} D_{\alpha \beta} c_{\alpha} c_{\beta}-\frac{1}{2} \bar{D}_{\alpha \beta} c_{\alpha}^{\dagger} c_{\beta}^{\dagger} \tag{9}\\
& +M_{\alpha} c_{\alpha}^{\dagger}+\bar{M}_{\alpha} c_{\alpha}
\end{align*}
$$

$H_{S O(2 N+1)}=\frac{1}{2}\left[c, c^{\dagger}, \frac{1}{\sqrt{2}}\right] \stackrel{\circ}{\mathcal{F}}_{0}\left[\begin{array}{c}c^{\dagger}, \\ c, \\ \frac{1}{\sqrt{2}}\end{array}\right], \mathcal{F}_{g} \equiv\left[\begin{array}{cc}F_{g} & D_{g} \\ -\bar{D}_{g} & -\bar{F}_{g}\end{array}\right]$
The $\stackrel{\circ}{\mathcal{F}}_{0}$ is given by
$\stackrel{\circ}{\mathcal{F}} \equiv\left[\begin{array}{ccc}F_{g} & D_{g} & \sqrt{2} M \\ -\bar{D}_{g} & -\bar{F}_{g} & \sqrt{2} \bar{M} \\ \sqrt{2} M^{\dagger} & \sqrt{2} M^{\mathrm{T}} & 0\end{array}\right], \stackrel{\circ}{\mathcal{F}} \equiv\left[\begin{array}{ccc}0 & 1_{N} & 0 \\ 1_{N} & 0 & 0 \\ 0 & 0 & 1\end{array}\right] \stackrel{\circ}{\mathcal{F}_{0}}\left[\begin{array}{ccc}0 & 1_{N} & 0 \\ 1_{N} & 0 & 0 \\ 0 & 0 & 1\end{array}\right] \cdot(11)$
We diagonalize the MFH $H_{S O(2 N+1)}$ as follows:
$H_{S O(2 N+1)}=\frac{1}{2}\left[d, d^{\dagger}, \frac{1}{\sqrt{2}}\right] G^{\dagger} \stackrel{\circ}{F}_{0} G\left[\begin{array}{c}d^{\dagger}, \\ d, \\ \frac{1}{\sqrt{2}}\end{array}\right], G^{\dagger} \stackrel{\circ}{\mathcal{F}}_{0} G=\left[\begin{array}{cc}E_{2 N} \cdot 1_{2 N} & 0 \\ 0 & 0\end{array}\right],(12)$ where $E_{2 N}=\left[E_{\text {diag. }}, E_{\text {diag. }}\right], E_{\text {diag. }} \equiv\left[E_{1}, \cdots, E_{N}\right] . E_{i}$ is a quasi-particle energy.

Seiya Nishiyama
Talk at Shikoku Seminar, Dec. 7-8 2019

SCF condition

If the conditions $F D-D \bar{F}=0$ and $b e e y^{\dagger}-\bar{a} e e y^{\mathrm{T}}=0$ are satisfied, then we have the expressions for x and x^{\dagger} as

$$
\begin{align*}
& \frac{x}{\sqrt{2}}=-\left(F F^{\dagger}+D D^{\dagger}\right)^{-1}(F \sqrt{2} z M+D \sqrt{2} z \bar{M}), \tag{13}\\
& \frac{x^{\dagger}}{\sqrt{2}}=-\left(\sqrt{2} z M^{\dagger} F^{\dagger}+\sqrt{2} z M^{\top} D^{\dagger}\right)\left(F F^{\dagger}+D D^{\dagger}\right)^{-1}
\end{align*}
$$

Then, at last we could reach the expressions for $\frac{x}{\sqrt{2}}$ and $\frac{x^{\dagger}}{\sqrt{2}}$:

$$
\begin{aligned}
\frac{x}{\sqrt{2}} & =\left(F F^{\dagger}+D D^{\dagger}\right)^{-1} \frac{2 z^{2}}{1-z^{2}} \sqrt{2} M \frac{y}{\sqrt{2}} e \frac{y^{\dagger}}{\sqrt{2}} \\
& \approx \frac{2 z^{2}}{1-z^{2}}<e>\left(F F^{\dagger}+D D^{\dagger}\right)^{-1} \sqrt{2} M, \\
\frac{x^{\dagger}}{\sqrt{2}} & =\frac{2 z^{2}}{1-z^{2}} \frac{y}{\sqrt{2}} e \frac{y^{\dagger}}{\sqrt{2}} \sqrt{2} M^{\dagger}\left(F F^{\dagger}+D D^{\dagger}\right)^{-1} \\
& \approx \frac{2 z^{2}}{1-z^{2}}<e>\sqrt{2} M^{\dagger}\left(F F^{\dagger}+D D^{\dagger}\right)^{-1} .
\end{aligned}
$$

$<e>=\frac{y}{\sqrt{2}} e \frac{y^{\dagger}}{\sqrt{2}}$ means the averaged eigenvalue distribution. This is the first time that the final solutions for $\frac{x}{\sqrt{2}}$ and $\frac{x^{\dagger}}{\sqrt{2}}$ could be derived within the present framework of the $S O(2 N+1)$ MFT. It takes place also for the Jacobi-algebra MFT for a boson system.

The inner product of the vectors leads to the relation:

$$
\frac{x^{\dagger}}{\sqrt{2}} \frac{x}{\sqrt{2}}=\frac{1-z^{2}}{2}=\frac{4 z^{4}}{\left(1-z^{2}\right)^{2}} 2<e>^{2} M^{\dagger}\left(F F^{\dagger}+D D^{\dagger}\right)^{-2} M,
$$

which is an appreciably interesting result in the $S O(2 N+1)$ MFT and simply rewritten as

$$
\begin{equation*}
\frac{16 z^{4}}{\left(1-z^{2}\right)^{3}}<e>^{2} M^{\dagger}\left(F F^{\dagger}+D D^{\dagger}\right)^{-2} M=1 \tag{15}
\end{equation*}
$$

The relation (15) designates that the additional SCF parameters $M s$ are inevitably restricted by the behavior of SCF parameters F, D governed by the condition $F D-D \bar{F}=0$.

Remember that this condition is one of the crucial condition to derive the equations for vectors $\frac{x}{\sqrt{2}}$ and $\frac{x^{\dagger}}{\sqrt{2}}$ which reflect the special aspect of the $S O(2 N+1)$ MFT. Such a result should not be a surprised consequence that the relation (15) is very similar to the relation obtained in the boson GHB-MFT. This is because we have adopted the same manner of mathematical computation as the manner that is done for the boson system.

§4. MF approach by another form of GDM

Introducing a matrix g_{x} represented by
$g_{x}=\left[\begin{array}{c}1_{N}-\frac{1}{\sqrt{1+z}} \frac{\bar{x}}{\sqrt{2}} \frac{1}{\sqrt{1+z}} \frac{x^{\mathrm{T}}}{\sqrt{2}} \\ \frac{1}{\sqrt{1+z}} \frac{\bar{x}}{\sqrt{2}} \frac{1}{\sqrt{1+z}} \frac{x^{\dagger}}{\sqrt{2}} \\ \frac{1}{\sqrt{1+z}} \frac{x}{\sqrt{2}} \frac{1}{\sqrt{1+z}} \frac{x^{\mathrm{T}}}{\sqrt{2}} \\ 1_{N}-\frac{1}{\sqrt{1+z}} \frac{x}{\sqrt{2}} \frac{1}{\sqrt{1+z}} \frac{x^{\dagger}}{\sqrt{2}}\end{array}\right], g_{x}^{\dagger}=g_{x}$,
the explicit expression for \mathcal{W} is given as

Seiya Nishiyama
Talk at Shikoku Seminar, Dec. 7-8 2019
where $g_{x} W g_{x}^{\dagger}$ is given by

$$
g_{x} W g_{x x}^{\dagger}=\left[\begin{array}{cc}
2 \rho_{G}-1_{N} & -2 \bar{\kappa}_{G} \\
2 \kappa_{G} & -2 \bar{\rho}_{G}+1_{N}
\end{array}\right], \begin{gathered}
\rho_{G}=R_{g}-\bar{L} \frac{1}{\sqrt{1+z}} \frac{x^{\mathrm{T}}}{\sqrt{2}}-\frac{1}{\sqrt{1+z}} \frac{\bar{x}}{\sqrt{2}} L^{\mathrm{r}}, \\
\kappa_{G}-\frac{1}{\sqrt{1+z}} \frac{x^{\mathrm{T}}}{\sqrt{2}}+\frac{1}{\sqrt{1+z}} \frac{x}{\sqrt{2}} L^{\mathrm{T}} .
\end{gathered}
$$

Thus we reach our desired goal: $S O(2 N+1)$ GEM \mathcal{W}
$\left[\begin{array}{ccc}2 \rho_{G}-1_{N} & -2 \bar{\kappa}_{G} & 2 \sqrt{1+z} \bar{L} \\ 2 \kappa_{G} & -2 \bar{\rho}_{G}+1_{N} & 2 \sqrt{1+z} L \\ 2 \sqrt{1+z} L^{\mathrm{T}} & 2 \sqrt{1+z} L^{\dagger} & z^{2}\end{array}\right]+\left[\begin{array}{ccc}\frac{\bar{x}}{\sqrt{2}} \frac{x^{\mathrm{T}}}{\sqrt{2}} & 0 & -z \frac{\bar{x}}{\sqrt{2}} \\ 0 & \frac{x}{\sqrt{2}} \frac{x^{\dagger}}{\sqrt{2}} & z \frac{x}{\sqrt{2}} \\ -z \frac{x^{\mathrm{T}}}{\sqrt{2}} & z \frac{x^{\dagger}}{\sqrt{2}} & 0\end{array}\right]$.
$L \equiv \frac{1}{\sqrt{2}} \frac{1}{\sqrt{1+z}}\left(\bar{R}_{g} x+K_{g} \bar{x}-\frac{1}{2} x\right)$.
The GHB MF operator \mathcal{F}_{g} is transformed to \mathcal{F}_{G} as

Seiya Nishiyama

Talk at Shikoku Seminar, Dec. 7-8 2019
in which, here we use a matrix \mathcal{F}_{G} which modifies \mathcal{F}_{g} as

$$
\mathcal{F}_{G}=\left[\begin{array}{cc}
F_{G} & D_{G} \tag{21}\\
-\overline{D_{G}} & -\overline{F_{G}}
\end{array}\right], \begin{aligned}
& F_{G \alpha \beta}=h_{\alpha \beta}+[\alpha \beta \mid \gamma \delta] \rho_{G \gamma \delta}, \\
& D_{G \alpha \beta}=\frac{1}{2}[\alpha \gamma \mid \beta \delta]\left(-\kappa_{G \delta \gamma}\right) .
\end{aligned}
$$

The transformed MF operator \mathcal{F}_{G} is rewritten as $\mathcal{F}_{G}=$

Thus we reach our final goal:Modified $S O(2 N+1)$ HB EE with \mathcal{F}_{G}
$\left\{\mathcal{F}_{G}-2(1-z) \mathcal{F}_{\bar{G}}\left[\begin{array}{cc}\bar{x} M^{\dagger}+M x^{\mathrm{T}} & \bar{x} M^{\mathrm{T}}-M x^{\dagger} \\ -\overline{\left.\bar{x} M^{\mathrm{T}}-M x^{\dagger}\right)} & -\overline{\left.\bar{x} M^{\dagger}+M x^{\top}\right)}\end{array}\right]\right\}\left[\begin{array}{l}a \\ b\end{array}\right]_{i}=\varepsilon_{i}\left[\begin{array}{l}a \\ b\end{array}\right]_{i}$,
$\mathcal{F}_{G}\left[\begin{array}{c}\frac{\bar{x}}{\sqrt{2}} \\ -\frac{x}{\sqrt{2}}\end{array}\right]+z\left[\begin{array}{l}\sqrt{2} M \\ \sqrt{2 M}\end{array}\right]=0, M^{\mathrm{T}} x-M^{\star} \bar{x}=0, i: \underline{\text { quasi-particle state }}$.

Seiya Nishiyama
Talk at Shikoku Seminar, Dec. 7-8 2019

§5. Discussions, perspective and summary

- The present MFT relates deeply to the algebraic MFT by Rosensteel based on the coadjoint orbit method.

Mean field theory for $U(n)$ dynamical groups, J. Phys. A:Math. Theor. 44 (2011) 165201:

There is no necessity to consider only the orbit of determinants, i.e., S-det.
For this aim, concept of symplectic structure is useful. This is made to construct a non-degenerate symplectic form ω as anantisymmetric form which is defined on the pair of tangent vector at $\mathcal{G H G}^{-1}$,

$$
\begin{equation*}
\omega_{\mathcal{G}^{W} \mathcal{G}^{-1}}(X, Y) \equiv-i \operatorname{tr}\left(\mathcal{G} \mathcal{W} \mathcal{G}^{-1}[X, Y]\right) \tag{24}
\end{equation*}
$$

The X and $Y \in S O(2 N+2)$ are tangent vectors at $\mathcal{G W G}^{-1}$. The idempotent GDM \mathcal{W} forms an orbit surface in the space of all the GDMs.

- It is necessary to introduce even-dimensional GDM on the $S O(2 N+2)$ CS rep. We use the $(2 N+2) \times(2 N+2)$ HB GDM $\mathcal{W}\left(\mathcal{W}^{2}=\mathcal{W}\right)$. This HB GDM on the $S O(2 N+2)$ CS rep is an element of the dual space \mathcal{G}^{*} of the Lie algebra $S O(2 N+2)$. We prepare both the HB GDM \mathcal{W} and its coadjoint orbit $O_{\mathcal{W}}=\left\{\mathcal{G} \mathcal{W G}^{-1} \mid \mathcal{G} \in S O(2 N+2)\right\}$.
- For the geometrical picture of $O_{\mathcal{W}}$, see Figuire 1. The determinantal orbit is regarded as a symplectic manifold. The $S O(2 N+2)$ TR for determinantal orbit Q_{W} preserves the symplectic structure
$\omega_{\mathcal{W}}(X, Y)=\omega_{\mathcal{G W G}^{-1}}\left(\mathbf{a d}_{\mathcal{G}}(X) \equiv \mathcal{G X}^{-1}, \mathbf{a d}_{\mathcal{G}}(Y) \equiv{\mathcal{G} Y \mathcal{G}^{-1}}^{-1}\right) .(25)$
The $X, Y \in S O(2 N+2)$ are tangent vectors at \mathcal{W}. We also define the coadjoint action $\mathrm{Ad}_{\mathcal{G}}$ on the GDM on the $S O(2 N+2)$ CS rep as $\operatorname{Ad}_{\mathcal{G}}^{*}(\mathcal{W})=\mathcal{G} \mathcal{W G}^{-1}$.
- The orbit surface $O_{\mathcal{W}}$ has one-to-one correspondence with the coset space of the $S O(2 N+2)$ modulo: The isotropy sub-group arises at $\mathcal{W}, \mathcal{H}_{\mathcal{W}}=\{h \in S O(2 N+2) \mid$ $\left.h \mathcal{W} h^{-1}=\mathcal{W}\right\}$ and the coset space is identified with $O_{w,}$, i.e. $\frac{S O(2 N+2)}{\mathcal{H}_{\mathcal{W}}} \rightarrow O_{\mathcal{W}}, \mathcal{G} \mathcal{H}_{\mathcal{W}} \rightarrow \mathcal{G W G}^{-1}$. In the generic orbit, $\operatorname{map} U(\mathcal{G}) \Phi \rightarrow \mathcal{G} \mathcal{W G}^{-1}$ is many-to one correspondence. Ambiguity in the correspondence can be expressed best in terms of the differing isotropy sub-groups.
- We adopt a model Hamiltonian \widehat{H} on the $S O(2 N+2)$ and energy function (EF) $H_{\mathcal{W}}\left(\mathcal{G W G}^{-1}\right) \equiv\left\langle U(\mathcal{G}) \Phi \mid \widehat{H}_{S O\left(2 N_{2}\right)} U(\mathcal{G}) \Phi\right\rangle$. To remove the ambiguity, we have a possibility to choice for the EF by averaging the energy as follows: $\mathcal{H}\left(\mathcal{G W} \mathcal{G}^{-1}\right)=\min _{h \in H_{\mathcal{W}}}\left\langle U(\mathcal{G}) U(h) \Phi \mid H_{S O(2 N+2)} U(\mathcal{G}) U(h) \Phi\right\rangle$. Minimization of EF is made on the orbit surface Q_{w}.
- The HF Hamiltonian $\underline{H_{H F}}$ is the projection of the vector field onto the surface relative to the nondegenerate symplectic form. The TDHF solutions are the integral curves of the HF vector field:

Figure 1. The Lie algebra elements X and Y are geometrically viewed as tangent vectors to the curves γ_{X} and γ_{Y} in the coadjoint orbit surface \mathcal{O}_{p}.

The Lie algebra elements X and Y are geometrically viewed as tangent vectors to the curves γ_{X} and γ_{Y}, respectively, in the coadjoint-orbit surface \mathcal{O}_{ρ}.

- Finally, we say, we have diagonalized the GHBMFH and obtained the unpaired-mode amplitudes $|x|^{2}$ expressed in terms of the $S C F$ and additional $S C F$ parameters and the $S O(2 N+1)$ parameter z^{2}. We have made clear a new aspect of these results which have never been in the traditional works.

Seiya Nishiyama
Talk at Shikoku Seminar, Dec. 7-8 2019

