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§1. Introduction, Motivation:

A theory for self-consistent field (SCF) description of
Fermi collective excitations has been proposed, based
on the SO(2N+1) Lie algebra of fermion operators;

Fermion mean-field theory(MFT)on Kähler coset space
G
H = SO(2N+2)

U(N+1) is given, basing on SO(2N+1) Lie algebra of

fermion operators. Embedding SO(2N+1) group into

SO(2N+2) group and using SO(2N+2)
U(N+1) coset variables, we

give the new MFT on the symmetric space SO(2N+2)
U(N+1) ;

1) We take an Hamiltonian consisting of the generalized HB
(GHB) MF Hamiltonian (MFH) and also assume a linear MFH
expressed in terms of the generators of theSO(2N+1)Lie algebra.

2) Diagonalizing MFH, a new aspect of eigenvalues of MFH is
shown. Excitation energy arisen from additional SCF parameter,
never been seen in the traditional fermion MFT, is derived.

• S. Berceanu, L. Boutet de Monvel and A. Gheorghe

Linear dynamical systems, coherent state manifolds, flows, and matrix Riccati

equation, J. Math. Phys. 34 (1992) 2353-2371;

On equations of motion on compact Hermitian symmetric spaces, J. Math. Phys.

33 (1992) 998-1007;
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§2. SO(2N+1) Bogoliubov transformation
and GDM

We consider a fermion system with N single-particle states. Let
cα and c†α (α=1,· · ·, N) be the annihilation-creation operatorss
satisfying the canonical commutation relation for the fermion.

{cα, c†β}=δαβ, {cα, cβ}={c†α, c†β}=0.

cα, c
†
α, Eαβ=c

†
αcβ−

1

2
δαβ=E

β†
α

,
Eαβ=c

†
αc
†
β=E

†
βα, Eαβ=cαcβ=−Eβα, I,

which are identified with generators of the Lie algebra SO(2N+1).

The SO(2N+1) Lie algebra of the fermion operators contains
U(N)(={Eα

β}) as sub-algebra.

The operator (−1)n : n = c†αcα anti-commutes with cα and c†α,

{cα, (−1)n}={c†α, (−1)n}=0.
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Introduce operator Θ≡θαc†α−θαcα, Θ2 =−θαθα≡−θ2,
then we have

eΘ=Z+Xαc
†
α−Xαcα, XαXα+Z

2=1, Z=cos θ,Xα=
θα
θ

sin θ.

(1)

We obtain,

eΘ(c, c†,
1√
2

)(−1)ne−Θ =(c, c†,
1√
2

)(−1)nGX,

GX
def
=


IN−XXT XX† −

√
2ZX

XXT IN−XX†
√

2ZX

√
2ZXT−

√
2ZX† 2Z2−1

.


(2)

Let G be the (2N + 1)× (2N + 1) matrix defined by

G≡GX


a b 0

b a 0

0 0 1

=


a−XY b + XY −

√
2ZX

b + XY a−XY
√

2ZX

√
2ZY −

√
2ZY 2Z2 − 1

 ,
X=aY T−bY †,

Y =XTa−X†b,

Y Y †+Z2 = 1.

(3)
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X:column,Y :row, vectors.TheSO(2N+1)canonical transformation
(TR) U(G) is generated by the fermion SO(2N +1) Lie operators.
The U(G) is extension of the generalized Bogoliubov TR U(g) to a
nonlinear Bogoliubov TR.

By the TR U(G) for fermion [c, c†,
1√
2

], we obtain

U(G)

[
c, c†,

1√
2

]
(−1)nU−1(G) =

[
c, c†,

1√
2

]
(−1)nG,

G
def
=


A B − x√

2

B A
x√
2

y√
2
− y√

2
z


, |G>=U(G)|0>, gdef

=

[
a b
b a

]
, |g>=U(g)|0>.

(4)

|G>/|g> are the SO(2N+1)/SO(2N) coherent states, respectively.

N×N matrices A = (Aα
β) and B = (Bαβ) and N -dimensional

column and row vectors x=(xα) and y=(yi) and z are defined as

A≡a−XY =a− xy

2(1+z)
, B≡b+XY =b+

xy

2(1+z)
,

x≡2ZX, y≡2ZY, z≡2Z2−1.

(5)
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UsingU(G)(c,c†,
1√
2

)U †(G)=U(G)(c,c†,
1√
2

)U †(G)(z+ρ)(−1)n,

Eq. (5) can be written with a q-number gauge factor (z−ρ) as

U(G)(c,c†,
1√
2

)U †(G)=(c,c†,
1√
2

)(z−ρ)G,

G†G=GG†=12N+1, detG=1,

(6)

U(G)U(G′)=U(GG′), U(G−1)=U−1(G)=U †(G), U(12N+1)=IG, (7)

The U(G) is the nonlinear TR with a q-number gauge factor
(z−ρ) where ρ is given as ρ=xαc

†
α−xαcα and ρ2 =−xαxα=z2−1.

SO(2N + 1) GDM

We consider the following SO(2N+1) GDM:

/W def
= G


−1N 0 0

0 1N 0

0 0 1

G†, /W†= /W , /W2
=12N+1. (8)

Using /W , we will attempt a different approach to the derivation
of the unified SO(2N + 1) HB eigenvalue equation (EE) from
the fermion MF Hamiltonian.
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§3. GHB mean-field Hamiltonian
and its diagonalization

GHB MFH for which we assume a linear MFH expressed in terms
of the generators of the SO(2N + 1) algebra:

HSO(2N+1) = Fαβ

(
c†αcβ−

1

2
δαβ

)
+

1

2
Dαβcαcβ −

1

2
Dαβc

†
αc
†
β

+ Mαc
†
α + Mαcα,

(9)

HSO(2N+1) =
1

2

[
c, c†,

1√
2

]
◦
F0


c†,

c,

1√
2

 , Fg≡
 Fg Dg

−Dg − F g

 . (10)

The
◦
F0 is given by

◦
F ≡


Fg Dg

√
2M

−Dg −F g

√
2M

√
2M † √2M T 0

, ◦F≡


0 1N 0

1N 0 0

0 0 1

◦F0


0 1N 0

1N 0 0

0 0 1

.(11)

We diagonalize the MFH HSO(2N+1) as follows:

HSO(2N+1) =
1

2

[
d,d†,

1√
2

]
G†
◦
F0G


d†,

d,
1√
2

, G† ◦F0G=

E2N ·12N 0

0 0

,(12)

where E2N =
[
Ediag., Ediag.

]
, Ediag.≡ [E1, · · · , EN ]. Ei is a

quasi-particle energy.
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SCF condition

If the conditions FD−DF =0 and beey†−aeeyT =0 are satisfied,

then we have the expressions for x and x† as

x√
2

= −
(
FF †+DD†

)−1(
F
√

2zM+D
√

2zM
)
,

x†√
2

= −
(√

2zM †F †+
√

2zM TD†
)(
FF †+DD†

)−1
.

(13)

Then, at last we could reach the expressions for
x√
2

and
x†√

2
:

x√
2

=
(
FF †+DD†

)−1 2z2

1− z2

√
2M

y√
2
e
y†√

2

≈ 2z2

1− z2
<e>

(
FF †+DD†

)−1√
2M,

x†√
2

=
2z2

1− z2

y√
2
e
y†√

2

√
2M † (FF †+DD†)−1

≈ 2z2

1− z2
<e>

√
2M † (FF †+DD†)−1

.


(14)

<e>≡y√
2
e
y†√

2
means the averaged eigenvalue distribution.

This is the first time that the final solutions for
x√
2

and
x†√

2
could

be derived within the present framework of the SO(2N+1) MFT.
It takes place also for the Jacobi-algebra MFT for a boson system.
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The inner product of the vectors leads to the relation:

x†√
2

x√
2

=
1− z2

2
=

4z4

(1− z2)2
2<e>2M †(FF †+DD†)−2

M,

which is an appreciably interesting result in the SO(2N+1) MFT
and simply rewritten as

16z4

(1− z2)3
<e>2M † (FF †+DD†)−2

M = 1. (15)

The relation (15) designates that the additional SCF parameters
Ms are inevitably restricted by the behavior of SCF parameters
F,D governed by the condition FD−DF =0.

Remember that this condition is one of the crucial condition to

derive the equations for vectors
x√
2

and
x†√

2
which reflect the special

aspect of the SO(2N+1) MFT. Such a result should not
be a surprised consequence that the relation (15) is very
similar to the relation obtained in the boson GHB-MFT. This
is because we have adopted the same manner of mathematical
computation as the manner that is done for the boson system.
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§4. MF approach by another form of GDM

Introducing a matrix gx represented by

gx=


1N−

1√
1+z

x√
2

1√
1+z

xT

√
2

1√
1+z

x√
2

1√
1+z

x†√
2

1√
1+z

x√
2

1√
1+z

xT

√
2

1N−
1√
1+z

x√
2

1√
1+z

x†√
2

, g†x=gx,

the explicit expression for /W is given as

/W=


− x√

2
gx x√

2
xT

√
2
− x

†
√

2
z





0

/W

0

0 0 1





x√
2

g†x
− x√

2

− x
T

√
2

x†√
2

z


, /W≡g

−1N 0

0 1N

g†,

=


gx /Wg

†
x gx /W


x√
2

− x√
2


[
xT

√
2
− x

†
√

2

]
/Wg†x z2


+



x√
2

xT

√
2

0 −z x√
2

0
x√
2

x†√
2

z
x√
2

−z x
T

√
2

z
x†√

2
0


,

(16)
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where gx /Wg†x is given by

gx/Wg
†
x=

[
2ρG−1N −2κG

2κG −2ρG+1N

]
,

ρG=Rg−L
1√
1+z

xT

√
2
− 1√

1+z

x√
2
LT,

κG=Kg−L
1√
1+z

xT

√
2

+
1√
1+z

x√
2
LT.

(17)

Thus we reach our desired goal:SO(2N+1) GDM /W

/W=



2ρG−1N −2κG 2
√

1+z L

2κG −2ρG+1N 2
√

1+zL

2
√

1+zLT 2
√

1+zL† z2


+



x√
2

xT

√
2

0 −z x√
2

0
x√
2

x†√
2

z
x√
2

−z x
T

√
2

z
x†√

2
0


. (18)

L≡ 1√
2

1√
1 + z

(
Rgx + Kgx−

1

2
x

)
. (19)

The GHB MF operator Fg is transformed to /FG as

/FG=


− x√

2
gx x√

2
xT

√
2
− x

†
√

2
z





√
2M

FG
√

2M

√
2M † √2M T 0





x√
2

g†x
− x√

2

− x
T

√
2

x†√
2

z


,(20)
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in which, here we use a matrix FG which modifies Fg as

FG =

[
FG DG

−DG −FG

]
,
FGαβ = hαβ + [αβ|γδ]ρGγδ,

DGαβ =
1

2
[αγ|βδ] (−κGδγ) .

(21)

The transformed MF operator /FG is rewritten as /FG=

gxFGg†x+gx

−MxTMx†

−MxT Mx†

+
−xM†−xMT

xM† xMT

g†x [gxFG+MTx−M†x
]
x√
2

− x√
2

+√2zgx

M
M


[
xT

√
2
− x

†
√

2

]FGg†x+
−MxTMx†

−MxT Mx†


+√2z

[
M†MT

]
g†x

[
xT

√
2
− x

†
√

2

]
FG


x√
2

− x√
2




.(22)

Thus we reach our final goal:Modified SO(2N+1)HB EE with FGFG−2(1−z)Fg−

 xM †+MxT xM T−Mx†

−(xM T−Mx†) −(xM †+MxT)


[
a

b

]
i

=εi

[
a

b

]
i

,

FG


x√
2

− x√
2

+z

√

2M

√
2M

=0,M Tx−M †x=0, i : quasi-particle state.


(23)
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§5. Discussions, perspective and summary

• The present MFT relates deeply to the algebraic MFT
by Rosensteel based on the coadjoint orbit method.

Mean field theory for U(n) dynamical groups, J. Phys. A:Math. Theor. 44
(2011) 165201:

There is no necessity to consider only the orbit
of determinants, i.e., S-det.

• For this aim, concept of symplectic structure is
useful. This is made to construct a non-degenerate
symplectic form ω as anantisymmetric form which
is defined on the pair of tangent vector at GWG−1,

ωGWG−1(X, Y ) ≡ −itr
(
GWG−1[X, Y ]

)
. (24)

TheX andY∈SO(2N+2)are tangent vectors at GWG−1.
The idempotent GDM W forms an orbit surface
in the space of all the GDMs.

• It is necessary to introduce even-dimensional GDM
on the SO(2N+2) CS rep.We use the (2N+2)×(2N+2) HB
GDMW(W2 =W). This HB GDM on the SO(2N+2)
CS rep is an element of the dual space G∗of the Lie
algebra SO(2N+2).We prepare both the HB GDMW
and its coadjoint orbit OW={GWG−1|G ∈SO(2N+2)}.
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• For the geometrical picture of OW, see Figuire 1.
The determinantal orbit is regarded as a symplec-
tic manifold. The SO(2N+2) TR for determinantal
orbit OW preserves the symplectic structure

ωW(X,Y)=ωGWG−1(adG(X)≡GXG−1, adG(Y )≡GYG−1). (25)

The X, Y ∈SO(2N+2) are tangent vectors at W. We
also define the coadjoint action Ad∗G on the GDM
on the SO(2N+2) CS rep as Ad∗G(W)=GWG−1.

• The orbit surface OWhas one-to-one correspondence
with the coset space of the SO(2N+2) modulo: The
isotropy sub-group arises atW,HW={h∈SO(2N+2)|
hWh−1=W}and the coset spaceis identified with OW,

i.e.,SO(2N+2)
HW

→OW,GHW→GWG−1. In the generic orbit,

map U(G)Φ→GWG−1 is many-to one correspondence.
Ambiguity in the correspondence can be expressed
best in terms of the differing isotropy sub-groups.

•We adoptamodel HamiltonianĤon theSO(2N+2)and

energy function (EF)HW(GWG−1)≡<U(G)Φ|ĤSO(2N+2)U(G)Φ>.
To remove the ambiguity, we have a possibility to
choiceforthe EFbyaveraging the energyasfollows:
H(GWG−1)=minh∈HW<U(G)U(h)Φ|HSO(2N+2)U(G)U(h)Φ>.
MinimizationofEF ismadeonthe orbit surfaceOW.
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• The HF Hamiltonian HHF is the projection of the
vector field onto the surface relative to the non-
degenerate symplectic form. The TDHF solutions
are the integral curves of the HF vector field:

The Lie algebra elements X and Y are geometri-
cally viewed as tangent vectors to the curves γX and
γY , respectively, in the coadjoint-orbit surface Oρ.

• Finally, we say, we have diagonalized the GHB-
MFH and obtained the unpaired-mode amplitudes
|x|2 expressed in terms of the SCF and additional
SCF parameters and the SO(2N+1) parameter z2.
We have made clear a new aspect of these results
which have never been in the traditional works.


